246 research outputs found

    Season influence on rapid thermal sensation assessment by young adults

    Get PDF
    Thermal comfort is one of the most important ergonomic aspects of building occupancy. In this research, laboratory experiments are performed in a climatic chamber and described in detail. Experiments are carried out under two scenarios: with two different college students cohorts and with five different but comparable experimental conditions in each cohort. Three hundred twenty-two individual assessments under specific controlled thermal environment conditions are collected. The actual thermal sensation assessments obtained in the experiments are compared to the results obtained by a predicted mean vote (PMV) model. The correlation analysis shows that statistically significant differences are meaningful between the spring-summer and the autumn-winter experiments but not between genders. This paper discusses the plausible factors contributing to the different correlations experienced in the autumn-winter and spring-summer experiments. A correction factor between PMV according to Fanger's comfort equation and the actual thermal sensation values reported by the participants is also sought with a focus on the seasonal effects. The predicted results are in good agreement with the experimental results. This allows for further considerations about the influence of the season on the initial thermal sensations experienced by young adults.info:eu-repo/semantics/publishedVersio

    Assessing heat pumps as flexible load

    Get PDF
    In a future power system featuring significant renewable generation, the ability to manipulate domestic demand through the flexible operation of heat-led technologies such as heat pumps and micro-combined heat and power could be a critical factor in providing a secure and stable supply of electrical energy. Using a simulation-based approach, this study examined the linkage between the thermal characteristics of buildings and the scope for flexibility in the operating times of air source heat pumps. This was assessed against the resulting impact on the end-user’s comfort and convenience. A detached dwelling and flat were modelled in detail along with their heating system in order to determine the temporal shift achievable in the heat pump operating times for present-day and future dwellings. The simulation results indicated that the scope for shifting heat pump operating times in the existing building stock was limited, with time shifts of only 1–2 h achieved before there was a serious impact on the comfort of the occupant. However, if insulation levels were dramatically improved and substantial levels of thermal buffering were added into the heating system, sizable time shifts of up to 6 h were achievable without a significant impact on either space or hot water temperatures

    Numerical Study of the Thermal Efficiency of a School Building with Complex Topology for Different Orientations

    Get PDF
    In this work a numerical model that simulates the thermal behavior of a building with complex topology and evaluates the indoor thermal and air quality, in transient conditions, is used for a school building thermal project. The program calculates the building surfaces solar radiation field, the building's temperatures, the internal environmental variables, and the occupant's comfort levels. Initially, after the numerical model is validated, the software is used to evaluate the school building's thermal response for four different orientations, either in winter or summer conditions. The work then aims to identify uncomfortable spaces in order to propose, as an example, several solutions that could be introduced for each orientation, that would improve the thermal comfort and air quality levels to which the occupants are subjected, and decrease the building's energy consumption levels. The information obtained from this study could be used to help a designer choose which thermal systems and solutions function best for a preferred school building orientation

    Evaluation of the Workplace Environment in the UK, and the Impact on Users’ Levels of Stimulation

    Get PDF
    The purpose of this study is to evaluate a number of recently completed workplaces in the UK. The first aim is to assess the impact of various aspects of the workplace environment on users’ levels of stimulation. The body of previous research undertaken into the workplace environment, identified the aspects to be investigated. Samples of employees from the sixteen businesses were surveyed to determine their perceptions of the workplaces. The results were entered into a regression analysis, and the most significant predictors of perceived stimulation identified. The data also revealed a dramatic reduction in staff arousal levels from mornings to afternoons. Thus, there is a second aim to determine whether changes to significant aspects of the workplace environment during the day can counteract the reduction in users’ stimulation. Two further workplaces were studied to enable changes to be made over a 12-week period. A sample of employees completed questionnaires, and semi-structured interviews revealed the reasons behind the results. It was found that provision of artwork, personal control of temperature and ventilation and regular breaks were the most significant contributions to increasing stimulation after lunch; while user choice of layout, and design and décor of workspaces and break areas, were the most significant aspects at design stage

    Evaluating the thermal comfort performance of heating systems using a thermal manikin with human thermoregulatory control

    Get PDF
    © International Society of the Built Environment. © The Author(s) 2014. The evaluation of the local thermal comfort and application of thermal manikins can further assist the design and selection of heating systems. This study aimed at evaluating the thermal comfort performance of different heating systems using a newly developed thermal manikin with an enhanced thermal control. The heating systems for a workstation, included a conventional radiator (convector) mounted under the window, heated floor in the occupied zone and an infrared heater mounted to the ceiling. The experiments were conducted in a test room with a façade attached to a climate chamber to simulate outdoor winter conditions. In these experiments, the supplied power for the different systems was kept constant to independently quantify the differences in their thermal comfort performance at same energy consumption. The thermal manikin was deployed in the occupied zone to evaluate the local and overall thermal comfort under each system using the equivalent temperature (Teq) approach. The thermoregulatory control used in the manikin operation is based on a model of human thermoregulation that interacts accurately with the surrounding environment through real-time measurements. The results showed that at the same energy consumption of the different systems, the variations in local thermal comfort levels were up to 1 on the comfort scale

    Engrained experience—a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares

    Get PDF
    Acceptance of public spaces is often guided by perceptual schemata. Such schemata also seem to play a role in thermal comfort and microclimate experience. For climate-responsive design with a focus on thermal comfort it is important to acquire knowledge about these schemata. For this purpose, perceived and “real” microclimate situations were compared for three Dutch urban squares. People were asked about their long-term microclimate perceptions, which resulted in “cognitive microclimate maps”. These were compared with mapped microclimate data from measurements representing the common microclimate when people stay outdoors. The comparison revealed some unexpected low matches; people clearly overestimated the influence of the wind. Therefore, a second assumption was developed: that it is the more salient wind situations that become engrained in people’s memory. A comparison using measurement data from windy days shows better matches. This suggests that these more salient situations play a role in the microclimate schemata that people develop about urban places. The consequences from this study for urban design are twofold. Firstly, urban design should address not only the “real” problems, but, more prominently, the “perceived” problems. Secondly, microclimate simulations addressing thermal comfort issues in urban spaces should focus on these perceived, salient situations

    Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI)

    Get PDF
    Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single ‘deterministic’ forecasts. Here, the UTCI is computed on a global scale,which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia
    corecore